Identification of KCNJ11 as a functional candidate gene for bovine meat tenderness.
نویسندگان
چکیده
The potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene was investigated as a candidate for meat tenderness based on the effects reported on muscle for KCNJ11 gene knockout in rat models and its position in a quantitative trait locus (QTL) for meat tenderness in the bovine genome. Sequence variations in the KCNJ11 gene were described by sequencing six amplified fragments, covering almost the entire gene. We identified single nucleotide polymorphisms (SNP) and validated them by different approaches, taking advantage of simultaneous projects that are being developed with the same Nelore population. By sequencing the KCNJ11 in Nelore steers representing extreme phenotypes for Warner-Bratzler shear force (WBSF), it was possible to identify 22 SNPs. We validated two of the identified markers by genotyping the whole population (n = 460). Analysis of association between genotypes and WBSF values revealed a significant additive effect of a SNP at different meat aging times (P ≤ 0.05). In addition, an association between the expression levels of KCNJ11 and WBSF was found, with lower expression levels of KCNJ11 associated with more tender meat (P ≤ 0.05). The results showed that the KCNJ11 gene is a candidate mapped to a QTL for meat tenderness previously identified on BTA15 and may be useful to identify animals with genetic potential to produce tender meat. The effect of KCNJ11 observed on muscle is potentially due to changes in activity of KATP channels, which in turn influence the flow of potassium in the intracellular space, allowing establishment of the membrane potential necessary for muscle contraction.
منابع مشابه
Allele- and parent-of-origin-specific effects on expression of the KCNJ11 gene: A candidate for meat tenderness in cattle.
In contrast to the Mendelian inheritance model, parental alleles can contribute unequally to gene expression, which may result in phenotypic variance among individuals and bias in the predicted additive effect of molecular markers associated with production traits. Given the need to understand the effects of allelic variation and parent-of-origin effects on the expression of genes with a commer...
متن کاملATP Sensitive Potassium Channels in the Skeletal Muscle Function: Involvement of the KCNJ11(Kir6.2) Gene in the Determination of Mechanical Warner Bratzer Shear Force
The ATP-sensitive K(+)-channels (KATP) are distributed in the tissues coupling metabolism with K(+) ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1), KCNJ11 (Kir6.2), ABCC8 (SUR1), and ABCC9 (SUR2) genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in va...
متن کاملAllelic Polymorphism of Calpastatin Gene (CAST) in Khalkhali Goats: A Possible Marker for Meat Tenderness
Calpastatin (CAST) is a specific inhibiter of Calpains, playing a role in meat tenderization and myogenesis. In the present study the polymorphism of the CAST gene ofKhalkhali goat in Azerbaijan province in Iran was investigated by polymerase chain reaction and restriction fragment length polymorphism technique (PCR-RFLP). Genomic DNA was extracted from whole blood samples collected from 200 Kh...
متن کاملIdentification of Toxic Shock Syndrome Toxin-1 (TSST-1) gene in Staphylococcus aureus isolated from bovine mastitis milk
Staphylococcus aureus is a major causative pathogen of clinical and subclinical mastitis of dairy domestic ruminants. This agent produces a variety of extracellular toxins and virulence factors including Toxic Shock Syndrome Toxin-1 (TSST-1) which is the major cause of Toxic Shock Syndrome (TSS). In this study 58 S. aureus isolates obtained from 9 dairy herds in East and West Azerbaijan provinc...
متن کاملاز ژنوم تا ژن: مروری بر ژنها و تغییرات ژنتیکی موثر بر بروز بیماری دیابت نوع دو
Despite the valuable results achieved in identification of genes and genetic changes associated with type 2 diabetes (T2D), lack of consistency and reproducibility of these results in different populations is one of the challenges lie ahead in introduction of T2D candidate genes. Therefore, the present review article aimed to provide an overview of the most important genes and genetic variation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 45 24 شماره
صفحات -
تاریخ انتشار 2013